Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 615(7954): 934-938, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949187

RESUMEN

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Asunto(s)
Microscopía por Crioelectrón , Complejo III de Transporte de Electrones , Complejo II de Transporte de Electrones , Complejo IV de Transporte de Electrones , Complejo I de Transporte de Electrón , Mitocondrias , Membranas Mitocondriales , Transporte de Electrón , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/ultraestructura , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/ultraestructura , Mitocondrias/química , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/ultraestructura , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Simulación de Dinámica Molecular , Sitios de Unión , Evolución Molecular
2.
Elife ; 122023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36622099

RESUMEN

Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type π-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology.


Asunto(s)
Drosophila melanogaster , Complejo I de Transporte de Electrón , Animales , Microscopía por Crioelectrón , Drosophila melanogaster/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/metabolismo , Ubiquinona/metabolismo
3.
Nature ; 609(7928): 808-814, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104567

RESUMEN

Complex I is the first enzyme in the respiratory chain, which is responsible for energy production in mitochondria and bacteria1. Complex I couples the transfer of two electrons from NADH to quinone and the translocation of four protons across the membrane2, but the coupling mechanism remains contentious. Here we present cryo-electron microscopy structures of Escherichia coli complex I (EcCI) in different redox states, including catalytic turnover. EcCI exists mostly in the open state, in which the quinone cavity is exposed to the cytosol, allowing access for water molecules, which enable quinone movements. Unlike the mammalian paralogues3, EcCI can convert to the closed state only during turnover, showing that closed and open states are genuine turnover intermediates. The open-to-closed transition results in the tightly engulfed quinone cavity being connected to the central axis of the membrane arm, a source of substrate protons. Consistently, the proportion of the closed state increases with increasing pH. We propose a detailed but straightforward and robust mechanism comprising a 'domino effect' series of proton transfers and electrostatic interactions: the forward wave ('dominoes stacking') primes the pump, and the reverse wave ('dominoes falling') results in the ejection of all pumped protons from the distal subunit NuoL. This mechanism explains why protons exit exclusively from the NuoL subunit and is supported by our mutagenesis data. We contend that this is a universal coupling mechanism of complex I and related enzymes.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón , Escherichia coli , Animales , Transporte de Electrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli , Mutación , NAD/metabolismo , NADH Deshidrogenasa , Oxidación-Reducción , Subunidades de Proteína , Protones , Quinonas/química , Quinonas/metabolismo , Electricidad Estática , Agua/química
4.
Nat Struct Mol Biol ; 29(2): 172-182, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145322

RESUMEN

Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4-3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone-NADH and rotenone-NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias Cardíacas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Sus scrofa , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
5.
J Biol Chem ; 296: 100474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33640456

RESUMEN

Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron-sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.


Asunto(s)
Complejo I de Transporte de Electrón/química , Proteínas Fúngicas/química , Proteínas Hierro-Azufre/química , Proteínas Mitocondriales/química , Yarrowia/enzimología , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Estabilidad Proteica , Yarrowia/genética
6.
Nat Commun ; 12(1): 707, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514727

RESUMEN

Mitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia-reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the "deactive" state, usually formed only after prolonged inactivity. Despite its tendency to adopt the "deactive" state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


Asunto(s)
Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/patología , Daño por Reperfusión Miocárdica/patología , NADH Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Sustitución de Aminoácidos , Animales , Microscopía por Crioelectrón , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Resistencia a la Enfermedad/genética , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Preparación de Corazón Aislado , Leucina/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Daño por Reperfusión Miocárdica/genética , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/ultraestructura , Oxidación-Reducción , Mutación Puntual , Prolina/genética
7.
Nat Commun ; 11(1): 6008, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243981

RESUMEN

Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (ß1-ß2S2 loop), ND1 (TMH5-6ND1 loop) and ND3 (TMH1-2ND3 loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2ND3 loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89ALYRM6 of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades de Proteína/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Subunidades de Proteína/genética , Protones , Ubiquinona/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(49): 31166-31176, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229520

RESUMEN

Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.


Asunto(s)
Actinobacteria/ultraestructura , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Intercambiadores de Sodio-Hidrógeno/ultraestructura , Actinobacteria/química , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Complejo I de Transporte de Electrón/ultraestructura , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Complejos Multiproteicos/química , Oxidación-Reducción , Bombas de Protones/química , Bombas de Protones/genética , Bombas de Protones/ultraestructura , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética
9.
Nat Commun ; 11(1): 4135, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811817

RESUMEN

Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Simulación de Dinámica Molecular , Quinonas/química , Thermus thermophilus/enzimología , Regulación Alostérica , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Modelos Moleculares , NAD/química , NAD/metabolismo , Redes Neurales de la Computación , Conformación Proteica , Protones , Quinonas/metabolismo , Thermus thermophilus/genética
10.
Nat Commun ; 11(1): 610, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001694

RESUMEN

NAD(P)H dehydrogenase-like (NDH) complex NDH-1L of cyanobacteria plays a crucial role in cyclic electron flow (CEF) around photosystem I and respiration processes. NDH-1L couples the electron transport from ferredoxin (Fd) to plastoquinone (PQ) and proton pumping from cytoplasm to the lumen that drives the ATP production. NDH-1L-dependent CEF increases the ATP/NADPH ratio, and is therefore pivotal for oxygenic phototrophs to function under stress. Here we report two structures of NDH-1L from Thermosynechococcus elongatus BP-1, in complex with one Fd and an endogenous PQ, respectively. Our structures represent the complete model of cyanobacterial NDH-1L, revealing the binding manner of NDH-1L with Fd and PQ, as well as the structural elements crucial for proper functioning of the NDH-1L complex. Together, our data provides deep insights into the electron transport from Fd to PQ, and its coupling with proton translocation in NDH-1L.


Asunto(s)
Complejo I de Transporte de Electrón/química , NADPH Deshidrogenasa/química , Fotosíntesis , Thermus/enzimología , Sitios de Unión , Carotenoides/química , Membrana Celular/química , Transporte de Electrón , Complejo I de Transporte de Electrón/ultraestructura , Ferredoxinas/química , Ferredoxinas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Modelos Moleculares , NADPH Deshidrogenasa/ultraestructura , Plastoquinona/química , Plastoquinona/metabolismo , Dominios Proteicos , Subunidades de Proteína/química , Homología Estructural de Proteína
11.
Sci Adv ; 5(12): eaax9484, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31844670

RESUMEN

Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/ultraestructura , Yarrowia/ultraestructura , Adenosina Trifosfato/química , Complejo I de Transporte de Electrón/genética , Humanos , Mitocondrias/genética , Membranas Mitocondriales , Conformación Proteica , Yarrowia/genética
12.
Annu Rev Biophys ; 48: 165-184, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30786232

RESUMEN

Single-particle electron cryomicroscopy (cryo-EM) has led to a revolution in structural work on mammalian respiratory complex I. Complex I (mitochondrial NADH:ubiquinone oxidoreductase), a membrane-bound redox-driven proton pump, is one of the largest and most complicated enzymes in the mammalian cell. Rapid progress, following the first 5-Å resolution data on bovine complex I in 2014, has led to a model for mouse complex I at 3.3-Å resolution that contains 96% of the 8,518 residues and to the identification of different particle classes, some of which are assigned to biochemically defined states. Factors that helped improve resolution, including improvements to biochemistry, cryo-EM grid preparation, data collection strategy, and image processing, are discussed. Together with recent structural data from an ancient relative, membrane-bound hydrogenase, cryo-EM on mammalian complex I has provided new insights into the proton-pumping machinery and a foundation for understanding the enzyme's catalytic mechanism.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/ultraestructura , Animales , Humanos , Lentes , Mitocondrias , Oxidación-Reducción
13.
Nature ; 566(7744): 411-414, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742075

RESUMEN

Cyclic electron flow around photosystem I (PSI) is a mechanism by which photosynthetic organisms balance the levels of ATP and NADPH necessary for efficient photosynthesis1,2. NAD(P)H dehydrogenase-like complex (NDH) is a key component of this pathway in most oxygenic photosynthetic organisms3,4 and is the last large photosynthetic membrane-protein complex for which the structure remains unknown. Related to the respiratory NADH dehydrogenase complex (complex I), NDH transfers electrons originating from PSI to the plastoquinone pool while pumping protons across the thylakoid membrane, thereby increasing the amount of ATP produced per NADP+ molecule reduced4,5. NDH possesses 11 of the 14 core complex I subunits, as well as several oxygenic-photosynthesis-specific (OPS) subunits that are conserved from cyanobacteria to plants3,6. However, the three core complex I subunits that are involved in accepting electrons from NAD(P)H are notably absent in NDH3,5,6, and it is therefore not clear how NDH acquires and transfers electrons to plastoquinone. It is proposed that the OPS subunits-specifically NdhS-enable NDH to accept electrons from its electron donor, ferredoxin3-5,7. Here we report a 3.1 Å structure of the 0.42-MDa NDH complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, obtained by single-particle cryo-electron microscopy. Our maps reveal the structure and arrangement of the principal OPS subunits in the NDH complex, as well as an unexpected cofactor close to the plastoquinone-binding site in the peripheral arm. The location of the OPS subunits supports a role in electron transfer and defines two potential ferredoxin-binding sites at the apex of the peripheral arm. These results suggest that NDH could possess several electron transfer routes, which would serve to maximize plastoquinone reduction and avoid deleterious off-target chemistry of the semi-plastoquinone radical.


Asunto(s)
Microscopía por Crioelectrón , Cianobacterias/química , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/ultraestructura , NADPH Deshidrogenasa/química , NADPH Deshidrogenasa/ultraestructura , Oxígeno/metabolismo , Fotosíntesis , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Coenzimas/química , Coenzimas/metabolismo , Cianobacterias/enzimología , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Ferredoxinas/metabolismo , Modelos Biológicos , Modelos Moleculares , NADPH Deshidrogenasa/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Plastoquinona/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
14.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 1): 12-18, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605121

RESUMEN

Biological samples are radiation-sensitive and require imaging under low-dose conditions to minimize damage. As a result, images contain a high level of noise and exhibit signal-to-noise ratios that are typically significantly smaller than 1. Averaging techniques, either implicit or explicit, are used to overcome the limitations imposed by the high level of noise. Averaging of 2D images showing the same molecule in the same orientation results in highly significant projections. A high-resolution structure can be obtained by combining the information from many single-particle images to determine a 3D structure. Similarly, averaging of multiple copies of macromolecular assembly subvolumes extracted from tomographic reconstructions can lead to a virtually noise-free high-resolution structure. Cross-correlation methods are often used in the alignment and classification steps of averaging processes for both 2D images and 3D volumes. However, the high noise level can bias alignment and certain classification results. While other approaches may be implicitly affected, sensitivity to noise is most apparent in multireference alignments, 3D reference-based projection alignments and projection-based volume alignments. Here, the influence of the image signal-to-noise ratio on the value of the cross-correlation coefficient is analyzed and a method for compensating for this effect is provided.


Asunto(s)
Algoritmos , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón/métodos , Complejo I de Transporte de Electrón/ultraestructura , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagenología Tridimensional/métodos , Proteínas Bacterianas/química , Microscopía por Crioelectrón/historia , Microscopía por Crioelectrón/instrumentación , Complejo I de Transporte de Electrón/química , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Imagenología Tridimensional/instrumentación , Relación Señal-Ruido , Yarrowia/química
15.
Nat Commun ; 9(1): 4500, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374105

RESUMEN

Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain and a significant source of reactive oxygen species (ROS). We hypothesized that during energy conversion by complex I, electron transfer onto ubiquinone triggers the concerted rearrangement of three protein loops of subunits ND1, ND3, and 49-kDa thereby generating the power-stoke driving proton pumping. Here we show that fixing loop TMH1-2ND3 to the nearby subunit PSST via a disulfide bridge introduced by site-directed mutagenesis reversibly disengages proton pumping without impairing ubiquinone reduction, inhibitor binding or the Active/Deactive transition. The X-ray structure of mutant complex I indicates that the disulfide bridge immobilizes but does not displace the tip of loop TMH1-2ND3. We conclude that movement of loop TMH1-2ND3 located at the ubiquinone-binding pocket is required to drive proton pumping corroborating one of the central predictions of our model for the mechanism of energy conversion by complex I proposed earlier.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/ultraestructura , Bombas de Protones/química , Ubiquinona/química , Ubiquinona/ultraestructura , Cristalografía por Rayos X , Disulfuros , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cinética , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Bombas de Protones/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
16.
Elife ; 72018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277212

RESUMEN

Mitochondrial complex I has a key role in cellular energy metabolism, generating a major portion of the proton motive force that drives aerobic ATP synthesis. The hydrophilic arm of the L-shaped ~1 MDa membrane protein complex transfers electrons from NADH to ubiquinone, providing the energy to drive proton pumping at distant sites in the membrane arm. The critical steps of energy conversion are associated with the redox chemistry of ubiquinone. We report the cryo-EM structure of complete mitochondrial complex I from the aerobic yeast Yarrowia lipolytica both in the deactive form and after capturing the enzyme during steady-state activity. The site of ubiquinone binding observed during turnover supports a two-state stabilization change mechanism for complex I.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas Fúngicas/metabolismo , Mitocondrias/metabolismo , Yarrowia/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/ultraestructura , Metabolismo Energético , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestructura , Mitocondrias/ultraestructura , Modelos Moleculares , Oxidación-Reducción , Consumo de Oxígeno , Conformación Proteica , Fuerza Protón-Motriz , Homología de Secuencia de Aminoácido , Yarrowia/genética , Yarrowia/ultraestructura
17.
Nat Struct Mol Biol ; 25(7): 548-556, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915388

RESUMEN

Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-Å structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-Å structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Mitocondrias Cardíacas/enzimología , Animales , Sitios de Unión , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Activación Enzimática , Ratones , Modelos Moleculares , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/ultraestructura , Nucleótidos/química , Nucleótidos/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Elementos Estructurales de las Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Ubiquinona/química , Ubiquinona/metabolismo
18.
Biochim Biophys Acta ; 1857(12): 1935-1942, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693469

RESUMEN

Mitochondrial complex I is a 1MDa membrane protein complex with a central role in aerobic energy metabolism. The bioenergetic core functions are executed by 14 central subunits that are conserved from bacteria to man. Despite recent progress in structure determination, our understanding of the function of the ~30 accessory subunits associated with the mitochondrial complex is still limited. We have investigated the structure of complex I from the aerobic yeast Yarrowia lipolytica by cryo-electron microscopy. Our density map at 7.9Å resolution closely matches the 3.6-3.9Å X-ray structure of the Yarrowia lipolytica complex. However, the cryo-EM map indicated an additional subunit on the side of the matrix arm above the membrane surface, pointing away from the membrane arm. The density, which is not present in any previously described complex I structure and occurs in about 20 % of the particles, was identified as the accessory sulfur transferase subunit ST1. The Yarrowia lipolytica complex I preparation is active in generating H2S from the cysteine derivative 3-mercaptopyruvate, catalyzed by ST1. We thus provide evidence for a link between respiratory complex I and mitochondrial sulfur metabolism.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Mitocondrias/enzimología , Transferasas del Grupo de Azufre/metabolismo , Azufre/metabolismo , Yarrowia/enzimología , Catálisis , Cisteína/análogos & derivados , Cisteína/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/ultraestructura , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Transferasas del Grupo de Azufre/química , Transferasas del Grupo de Azufre/genética , Transferasas del Grupo de Azufre/ultraestructura , Yarrowia/genética , Yarrowia/ultraestructura
19.
Nature ; 538(7625): 406-410, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27595392

RESUMEN

Mitochondrial complex I (also known as NADH:ubiquinone oxidoreductase) contributes to cellular energy production by transferring electrons from NADH to ubiquinone coupled to proton translocation across the membrane. It is the largest protein assembly of the respiratory chain with a total mass of 970 kilodaltons. Here we present a nearly complete atomic structure of ovine (Ovis aries) mitochondrial complex I at 3.9 Å resolution, solved by cryo-electron microscopy with cross-linking and mass-spectrometry mapping experiments. All 14 conserved core subunits and 31 mitochondria-specific supernumerary subunits are resolved within the L-shaped molecule. The hydrophilic matrix arm comprises flavin mononucleotide and 8 iron-sulfur clusters involved in electron transfer, and the membrane arm contains 78 transmembrane helices, mostly contributed by antiporter-like subunits involved in proton translocation. Supernumerary subunits form an interlinked, stabilizing shell around the conserved core. Tightly bound lipids (including cardiolipins) further stabilize interactions between the hydrophobic subunits. Subunits with possible regulatory roles contain additional cofactors, NADPH and two phosphopantetheine molecules, which are shown to be involved in inter-subunit interactions. We observe two different conformations of the complex, which may be related to the conformationally driven coupling mechanism and to the active-deactive transition of the enzyme. Our structure provides insight into the mechanism, assembly, maturation and dysfunction of mitochondrial complex I, and allows detailed molecular analysis of disease-causing mutations.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/química , Animales , Sitios de Unión , Cardiolipinas/química , Cardiolipinas/metabolismo , Reactivos de Enlaces Cruzados/química , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Modelos Moleculares , NADP/metabolismo , Oxidación-Reducción , Panteteína/análogos & derivados , Panteteína/metabolismo , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ovinos
20.
Nature ; 537(7622): 644-648, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27654913

RESUMEN

Mitochondrial electron transport chain complexes are organized into supercomplexes responsible for carrying out cellular respiration. Here we present three architectures of mammalian (ovine) supercomplexes determined by cryo-electron microscopy. We identify two distinct arrangements of supercomplex CICIII2CIV (the respirasome)-a major 'tight' form and a minor 'loose' form (resolved at the resolution of 5.8 Å and 6.7 Å, respectively), which may represent different stages in supercomplex assembly or disassembly. We have also determined an architecture of supercomplex CICIII2 at 7.8 Å resolution. All observed density can be attributed to the known 80 subunits of the individual complexes, including 132 transmembrane helices. The individual complexes form tight interactions that vary between the architectures, with complex IV subunit COX7a switching contact from complex III to complex I. The arrangement of active sites within the supercomplex may help control reactive oxygen species production. To our knowledge, these are the first complete architectures of the dominant, physiologically relevant state of the electron transport chain.


Asunto(s)
Respiración de la Célula , Microscopía por Crioelectrón , Complejo III de Transporte de Electrones/ultraestructura , Complejo IV de Transporte de Electrones/ultraestructura , Complejo I de Transporte de Electrón/ultraestructura , Animales , Sitios de Unión , Dominio Catalítico , Transporte de Electrón , Complejo I de Transporte de Electrón/química , Complejo III de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/química , Corazón , Mitocondrias/enzimología , Mitocondrias/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...